

	Products
	Technologies
	Demos
	Docs
	Blog
	Support
	Company

	
	 My Licenses

Text Control Products

WEB, SERVER AND CLOUD

ASP.NET Core .NET 6 .NET 7 .NET 8 Angular Blazor React JavaScript

	TX Text Control .NET Server Popular32.0 SP2 Integrate document processing into your applications to create documents such as PDFs and MS Word documents, including client-side document editing, viewing, and electronic signatures.

Getting started with:

	ASP.NET Core
	Angular
	Blazor
	JavaScript
	React

	Download Trial
	Trial Access Token

DESKTOP

Windows Forms .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WinForms 32.0 SP2 Document processing and editing for Windows Forms applications.
	TX Text Control Express 32.0 SP2 Free for private and non-commercial use.
	TX Spell .NET Powerful spell checking and language tools for Windows Forms based applications.

WPF .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WPF 32.0 SP2 Document processing and editing for WPF applications.
	TX Spell .NET Powerful spell checking and language tools for WPF based applications.

ActiveX VB6

	TX Text Control ActiveX 32.0 Document processing for COM-based applications built in Visual Basic 6.

HOSTED CLOUD

Cloud Web API

	ReportingCloud "Pay-per-document", hosted document creation Web API.

LOW CODE PLATFORM

Angular React JavaScript

	DS Server 3.2.0 Low-Code backend for web applications to bring document processing and editing to any app on any platform.

Core Technologies

Our libraries - built around our core technologies - help developers add deep functionality document processing to web, mobile, cloud and desktop applications.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	 Reporting Combine powerful reporting and an easy-to-use MS Word compatible word processor
	 Editing Cross-browser, cross-platform document editor to edit MS Word compatible documents.
	 PDF Processing Create and process PDF document workflows into business applications.

	 Signatures Electronic signature workflows for your applications.
	 Viewing Share documents with form fields and collaboration features.
	 Workflow Automate collaboration processes and speed up the complete document workflow.

Text Control Documentation

The documentation provides an overview of the complete product range, including getting started tutorials, technical articles and reference guides.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

ASP.NET

	TX Text Control .NET Server
	TX Spell .NET

Windows Forms

	TX Text Control .NET
	TX Spell .NET

WPF

	TX Text Control .NET
	TX Spell .NET

ActiveX

	TX Text Control ActiveX

Angular

	Angular Package for TX Text Control

Text Control Blog

The Text Control Blog is the central information channel for all products, developed by Text Control. We post news updates, product information, sample applications, technical articles, tutorials and conference reports several times per week. Subscribe to the feed today.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Read Blog

Where to see Text Control: Conferences in 2024 March 5, 2024

Working with Content Controls in MS Wordâ€¦ March 4, 2024

TX Text Control React Packages Released February 29, 2024

Using the TX Text Control Document Viewer in aâ€¦ February 29, 2024

	Tutorial
	Angular
	Reporting
	Sample
	HTML5
	ReportingCloud
	.NET
	ASP.NET
	Windows Forms
	ASP.NET Core
	Conference
	Service Pack
	Corporate
	WPF
	Release
	DS Server

Text Control Support

The Text Control Support section offers links to all technical resources related to Text Control, including documentation, getting started guides, FAQs and links to interesting blog articles.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

	Overview
	Documentation
	Known Issues

About Text Control

Text Control is an award-winning Visual Studio Industry Partner and leading vendor of word processing and reporting components for Windows, web and mobile development technologies.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	Overview
	Consulting
	Partner Program
	Customers
	Careers
	Events

	Newsletter
	Subscribe
	Unsubscribe

	Legal
	Privacy Policy
	Legal Notices

Creating PDF Documents from MS Word DOCX in C#

Next Previous

Creating PDF Documents from MS Word DOCX in C#

 by Bjoern Meyer| February 26, 2021 | Angular ASP.NET DOCX Mail Merge PDF

Summary

TX Text Control provides an elegant way to create Adobe PDF documents by merging data into MS Word DOCX templates. The developer libraries can be used in any platform including ASP.NET Core, Angular, React or Windows applications.

With Text Control components and libraries, PDF documents can be created in all platforms including ASP.NET Core, Angular, React or pure JavaScript. This article focuses on the creation of PDF documents in .NET applications with C#.

In contrast to other PDF tools, TX Text Control can be used to create PDF documents from scratch or to prepare them from existing MS Word templates programmatically.

Creating PDFs From Scratch

TX Text Control libraries provide a powerful and complete API to create and manipulate documents programmatically. This API can be used in any .NET application including web and Windows applications.

The following code snippet shows how to create a new instance of ServerTextControl â•° TX Text Control .NET for Windows Forms

 â•° TXTextControl Namespace

 â•° ServerTextControl Class

The ServerTextControl class implements a component that provide high-level text processing features for server-based applications. , the non-visual Text Control class. The code inserts a paragraph, a table and exports the document as an Adobe PDF document:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		using (ServerTextControl tx = new ServerTextControl())
		{
		tx.Create();
		
		// create a new selection range
		Selection range = new Selection();
		range.Bold = true;
		range.FontSize = 400;
		range.Text = "This is a new paragraph\r\n";
		
		// insert the range to the document
		tx.Selection = range;
		
		// add a table
		tx.Tables.Add(5, 5, 10);
		
		foreach (TableCell cell in tx.Tables.GetItem(10).Cells)
		{
		cell.Text = cell.Row.ToString() + ", " + cell.Column.ToString();
		}
		
		// save the document as PDF
		tx.Save("test.pdf", StreamType.AdobePDF);
		}

view raw tx.cs hosted with â�¤ by GitHub

Use MS Word DOCX Templates

TX Text Control provides MS Word inspired document editor components for Angular, React and ASP.NET Core to modify and create templates. After a template has been designed, the reporting engine MailMerge â•° TX Text Control .NET for Windows Forms

 â•° DocumentServer Namespace

 â•° MailMerge Class

The MailMerge class is a .NET component that can be used to effortlessly merge template documents with database content in .NET projects, such as ASP.NET web applications, web services or Windows services. is used to populate merge fields with actual data from JSON or business objects. For each data row of the master table in the data source, a document is created. Merge fields are populated with column values and repeating blocks are merged with data rows of related child tables in the data source.

A data source can be any IEnumerable object (business objects), JSON objects, DataSet and DataTable objects.

The following code creates an instance of the reporting engine MailMerge to merge the template that is loaded into a ServerTextControl with an IEnumerable object. Finally, the document is exported as a PDF document:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		// create a business object that is used
		// as the data source
		Invoice invoice = new Invoice() { Name = "Report" };
		
		using (ServerTextControl tx = new ServerTextControl())
		{
		tx.Create();
		
		LoadSettings ls = new LoadSettings() {
		ApplicationFieldFormat = ApplicationFieldFormat.MSWord
		};
		
		// load the created template
		tx.Load("template.docx", StreamType.WordprocessingML, ls);
		
		// create a new MailMerge engine
		using (MailMerge mailMerge = new MailMerge())
		{
		// connect to ServerTextControl
		mailMerge.TextComponent = tx;
		
		// merge the template that is loaded with
		// the business object
		mailMerge.MergeObject(invoice);
		}
		
		// export the document as PDF
		tx.Save("test.pdf", StreamType.AdobePDF);
		}

view raw tx.cs hosted with â�¤ by GitHub

Apply PDF Settings

Using the SaveSettings â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° SaveSettings Class

The SaveSettings class provides properties for advanced settings and information during save operations. class, you can define two passwords: the UserPassword to open the document and the MasterPassword for the document's access permissions. These permissions can be set using the DocumentAccessPermissions â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° LoadSettings Class

 â•° DocumentAccessPermissions Property

Specifies how a document can be accessed after it has been loaded. property.

Possible values are:

AllowAll

After the document has been opened no further document access is restricted.

AllowAuthoring

Allows comments to be added and interactive form fields (including signature fields) to be filled in.

AllowAuthoringFields

Allows existing interactive form fields (including signature fields) to be filled in.

AllowContentAccessibility

Allows content access for the visually impaired only.

AllowDocumentAssembly

Allows the document to be to assembled (insert, rotate or delete pages and create bookmarks or thumbnails).

AllowExtractContents

Allows text and/or graphics to be extraced.

AllowGeneralEditing

Allows the document contents to be modified.

AllowHighLevelPrinting

Allows the document to be printed.

AllowLowLevelPrinting

Allows the document to be printed (low-level).

The following code shows how to set some of the above access permissions on saving a document:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		SaveSettings saveSettings = new SaveSettings()
		{
		MasterPassword = "Master",
		UserPassword = "User",
		DocumentAccessPermissions =
		DocumentAccessPermissions.AllowLowLevelPrinting |
		DocumentAccessPermissions.AllowExtractContents
		};
		
		textControl1.Save(StreamType.AdobePDF, saveSettings);

view raw data.cs hosted with â�¤ by GitHub

Adding Digital Signatures

TX Text Control can be used to create Adobe PDF and PDF/A documents with digital signatures. These signatures can be created with PFX, DER Cer or Base64 CER certificate files. All you need is a valid certificate that is defined in the TXTextControl.SaveSettings class â•° TX Text Control .NET for Windows Forms

 â•° TXTextControl Namespace

 â•° SaveSettings Class

The SaveSettings class provides properties for advanced settings and information during save operations. .

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		TXTextControl.SaveSettings settings = new TXTextControl.SaveSettings();
		X509Certificate2 cert = new X509Certificate2("test.pfx", "123");
		settings.DigitalSignature = new TXTextControl.DigitalSignature(cert, null);
		
		textControl1.Save("results.pdf", TXTextControl.StreamType.AdobePDF, settings);

view raw data.cs hosted with â�¤ by GitHub

Creating PDF/A - Embedded Documents

TX Text Control supports the embedding of attachments in PDF/A-3b documents and also the extraction of an attachment. The following code shows how to embed an external XML document (ZUGFeRD) into the created PDF/A document:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		string xmlZugferd = ""; // your XML
		string metaData = ""; // required RDF meta data
		
		TXTextControl.SaveSettings saveSettings = new TXTextControl.SaveSettings();
		
		// create a new embedded file
		var zugferdInvoice = new TXTextControl.EmbeddedFile(
		"ZUGFeRD-invoice.xml",
		Encoding.UTF8.GetBytes(xmlZugferd),
		metaData);
		
		zugferdInvoice.Description = "ZUGFeRD-invoice";
		zugferdInvoice.Relationship = "Alternative";
		zugferdInvoice.MIMEType = "application/xml";
		zugferdInvoice.LastModificationDate = DateTime.Now;
		
		// set the embedded files
		saveSettings.EmbeddedFiles = new TXTextControl.EmbeddedFile[] {
		new TXTextControl.EmbeddedFile(
		"ZUGFeRD-invoice.xml",
		Encoding.UTF8.GetBytes(xmlZugferd),
		metadata) };
		
		// export the PDF
		textControl1.Save("test.pdf", TXTextControl.StreamType.AdobePDFA, saveSettings);

view raw test.cs hosted with â�¤ by GitHub

Creating Fillable PDFs with Form Fields

TX Text Control provides a comprehensive way to create documents with fillable form elements such as form text boxes, check box fields and drop-down elements. The following code shows how to create a PDF document with form fields from scratch:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		using (TXTextControl.ServerTextControl tx = new TXTextControl.ServerTextControl()) {
		tx.Create();
		
		tx.Selection.FontSize = 800;
		tx.Selection.Text = "Sample Form\r\n\r\n";
		
		tx.Selection.FontSize = 400;
		tx.Selection.Text = "Company name:\r\n";
		
		// add a text form field
		TXTextControl.TextFormField textFormField = new TXTextControl.TextFormField(1000);
		textFormField.Name = "company_name";
		textFormField.Text = "Text Control, LLC";
		tx.FormFields.Add(textFormField);
		
		tx.Selection.Text = "\r\n\r\nCountry:\r\n";
		
		// add a text form field
		TXTextControl.SelectionFormField selectionFormField = new TXTextControl.SelectionFormField(1000);
		selectionFormField.Name = "company_country";
		selectionFormField.Items = new string[] { "United States", "Germany", "Italy" };
		selectionFormField.SelectedIndex = 0;
		tx.FormFields.Add(selectionFormField);
		
		// export the document as PDF
		tx.Save("results.pdf", TXTextControl.StreamType.AdobePDF);
		}

view raw sample.cs hosted with â�¤ by GitHub

Visual Components

Not being dependent on an additional third-party tool such as MS Word to create templates is a very important key aspect when implementing document processing functionality into business applications. The MS Word compatible editor has the look and feel of MS Word, but can be customized and adapted to user requirements. MS Word templates can be reused and edited in TX Text Control. Templates can be stored in industry standard(ized) formats such as DOCX, DOC and RTF and are always compatible with other word processors such as MS Word.

Available for ASP.NET Core, ASP.NET MVC, Angular and React applications, the DocumentViewer is typically used to display documents and resulting reports in web applications. It provides a fully-featured interface to select text for clipboard actions, to search the text, a thumbnail side-bar view and a toolbar for typical tasks.

Conclusion

TX Text Control provides a feature-complete set of tools to create, modify and to edit Adobe PDF documents. Have a look at the live demo to see the Text Control components and libraries in action:

Live Demos

Angular

Integrate true WYSIWYG document editing and reporting into Angular applications. Give your users an MS Word compatible editor to create powerful reporting templates anywhere - in any browser on any device. Combine the power of a reporting tool and an easy-to-use document editor that is fully programmable and customizable.

Learn more about Angular

Related Posts

ASP.NET Angular

View and Edit MS Word DOCX Documents in Angular

by Bjoern Meyer| October 26, 2023

The TX Text Control Document Editor is available for Angular to view, edit and print MS Word documents in any web browser. This tutorial will show you how to create a new Angular application using the document editor and will cover typical tasks.

 Document Editor DOCX

ASP.NET Windows Forms

Converting MS Word DOCX Documents to PDF in C#

by Bjoern Meyer| October 16, 2023

Use TX Text Control to programmatically convert MS Word DOC and DOCX documents to PDF. This article outlines the requirements and explains the simple steps you need to take to successfully convert Office documents to Adobe PDF.

 PDF DOCX MS Word

ASP.NET Angular

How to Choose the Best C# Library for your Document Processing Needs

by Bjoern Meyer| August 7, 2023

There are many document processing libraries and components on the market. This article is an overview of all the important aspects in the selection of the best library for your needs.

 ASP.NET Core PDF

Angular ASP.NET

Adding Attachments to Adobe PDF Documents using C#

by Bjoern Meyer| February 25, 2022

TX Text Control is used to create electronic document containers by embedding files in Adobe PDF documents. This tutorial shows how to add and extract attachments to and from PDF documents.

 ASP.NET Core Digital Documents PDF

	Summary
	Creating PDFs From Scratch
	Use MS Word DOCX Templates
	Apply PDF Settings
	Adding Digital Signatures
	Creating PDF/A - Embedded Documents
	Creating Fillable PDFs with Form Fields
	Visual Components
	Conclusion

Popular Products

	TX Text Control .NET Server for ASP.NET
	Angular Package for TX Text Control
	TX Text Control .NET for Windows Forms
	TX Text Control .NET for WPF
	DS Server

Technologies

	Reporting
	Document Editing
	PDF Processing
	Electronic Signatures
	Document Viewing

Get Products

	Free Trials
	Online Store

Resources

	Documentation
	Demos
	Blog

Support

	Open Support Case

Ready To Talk?

	Contact Us

	USA: +1 704-544-7445
	Germany: +49 421 42706710

	
Follow Us

Text Control is an award-winning vendor of document processing and reporting components for Windows, web, cloud and mobile development technologies.

We â™¥ documents.

Sign in Contact Us Privacy Policy Legal Notices

Copyright Â© 2024 Text Control, LLC. All rights reserved. Legal Notices.

TX Text Control, DS Server, ReportingCloud and other product names used herein might be trademarks or registered trademarks of Text Control, LLC and/or one of its subsidiaries or affiliates in the U.S. and/or other countries.

