

	Products
	Technologies
	Demos
	Docs
	Blog
	Support
	Company

	
	 My Licenses

Text Control Products

WEB, SERVER AND CLOUD

ASP.NET Core .NET 6 .NET 7 .NET 8 Angular Blazor React JavaScript

	TX Text Control .NET Server Popular32.0 SP2 Integrate document processing into your applications to create documents such as PDFs and MS Word documents, including client-side document editing, viewing, and electronic signatures.

Getting started with:

	ASP.NET Core
	Angular
	Blazor
	JavaScript
	React

	Download Trial
	Trial Access Token

DESKTOP

Windows Forms .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WinForms 32.0 SP2 Document processing and editing for Windows Forms applications.
	TX Text Control Express 32.0 SP2 Free for private and non-commercial use.
	TX Spell .NET Powerful spell checking and language tools for Windows Forms based applications.

WPF .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WPF 32.0 SP2 Document processing and editing for WPF applications.
	TX Spell .NET Powerful spell checking and language tools for WPF based applications.

ActiveX VB6

	TX Text Control ActiveX 32.0 Document processing for COM-based applications built in Visual Basic 6.

HOSTED CLOUD

Cloud Web API

	ReportingCloud "Pay-per-document", hosted document creation Web API.

LOW CODE PLATFORM

Angular React JavaScript

	DS Server 3.2.0 Low-Code backend for web applications to bring document processing and editing to any app on any platform.

Core Technologies

Our libraries - built around our core technologies - help developers add deep functionality document processing to web, mobile, cloud and desktop applications.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	 Reporting Combine powerful reporting and an easy-to-use MS Word compatible word processor
	 Editing Cross-browser, cross-platform document editor to edit MS Word compatible documents.
	 PDF Processing Create and process PDF document workflows into business applications.

	 Signatures Electronic signature workflows for your applications.
	 Viewing Share documents with form fields and collaboration features.
	 Workflow Automate collaboration processes and speed up the complete document workflow.

Text Control Documentation

The documentation provides an overview of the complete product range, including getting started tutorials, technical articles and reference guides.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

ASP.NET

	TX Text Control .NET Server
	TX Spell .NET

Windows Forms

	TX Text Control .NET
	TX Spell .NET

WPF

	TX Text Control .NET
	TX Spell .NET

ActiveX

	TX Text Control ActiveX

Angular

	Angular Package for TX Text Control

Text Control Blog

The Text Control Blog is the central information channel for all products, developed by Text Control. We post news updates, product information, sample applications, technical articles, tutorials and conference reports several times per week. Subscribe to the feed today.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Read Blog

Where to see Text Control: Conferences in 2024 March 5, 2024

Working with Content Controls in MS Wordâ€¦ March 4, 2024

TX Text Control React Packages Released February 29, 2024

Using the TX Text Control Document Viewer in aâ€¦ February 29, 2024

	Reporting
	Tutorial
	WPF
	ASP.NET
	Sample
	DS Server
	HTML5
	Release
	Corporate
	ASP.NET Core
	Angular
	Conference
	ReportingCloud
	Service Pack
	Windows Forms
	.NET

Text Control Support

The Text Control Support section offers links to all technical resources related to Text Control, including documentation, getting started guides, FAQs and links to interesting blog articles.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

	Overview
	Documentation
	Known Issues

About Text Control

Text Control is an award-winning Visual Studio Industry Partner and leading vendor of word processing and reporting components for Windows, web and mobile development technologies.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	Overview
	Consulting
	Partner Program
	Customers
	Careers
	Events

	Newsletter
	Subscribe
	Unsubscribe

	Legal
	Privacy Policy
	Legal Notices

Store Documents as PDF/A using C# - A Future-Proof Archiving Format

Next Previous

Store Documents as PDF/A using C# - A Future-Proof Archiving Format

 by Bjoern Meyer| October 24, 2023 | ASP.NET ServerTextControl PDF PDF/A

Summary

PDF/A is an international ISO standard for the preservation of electronic and digital documents. This article will explain the reasons and motivations and will show you how to create PDF/A compliant documents in .NET C# applications.

At a very early stage, almost 10 years ago, we began to invest in the PDF/A standard for archiving. The goal of the PDF/A format is to guarantee the same rendering even after years of electronic archiving. Some features are disabled: Font linking, Javascript, encryption and transparent layers.

Why is such a standard important? The idea is to provide a document format that will guarantee the readability of your documents, even if the technology changes in the future. Many companies, organizations, and governments use this standard to archive documents or mandate this format for communication and digital transformation.

PDF/A Benefits

Like PDF, PDF/A is a platform-independent format that encapsulates all the information that is necessary for the rendering of the document. For example, when creating PDF/A documents, only embeddable fonts are allowed because all fonts must be embedded. The following features are not allowed:

	JavaScript and launching executable files are prohibited.
	Encryption is not allowed.
	For unlimited, universal rendering, all fonts must be embedded and legally embeddable.
	Transparent layers are not allowed.
	Audio and video content is not allowed.

PDF/A vs. PDF/A-3b

PDF/A-1 does not allow embedded files. However, PDF/A-3 allows the embedding of any file format, including XML, which is important for electronic invoices such as ZUGFeRD and Factur X. This enables the integration of archiving processes into the PDF document creation process, such as invoices, as part of the digital transformation.

Learn More

Invoice creation and processing is one of the main applications for Text Control's digital document processing components. This article summarizes the most common scenarios.

Typical Use-Case: Invoice Generation with TX Text Control in C#

Create PDF/A Programmatically

This article describes how to programmatically generate PDF documents from HTML content in a .NET Console App.

Prerequisites

The following tutorial requires a trial version of TX Text Control .NET Server for ASP.NET.

	Download Trial Version

Preparing the Application

For the purposes of this demo, a .NET 6 console application is built.

	
In Visual Studio, create a new Console App using .NET 6.

	
In the Solution Explorer, select your created project and choose Manage NuGet Packages... from the Project main menu.

Select Text Control Offline Packages from the Package source drop-down.

Install the latest versions of the following package:

	TXTextControl.TextControl.ASP.SDK

Adding the Code

	
Open the Program.cs file and add the following code:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		using (TXTextControl.ServerTextControl tx = new TXTextControl.ServerTextControl())
		{
		tx.Create();
		
		TXTextControl.Selection selection = new TXTextControl.Selection();
		selection.Text = "Hello, PDF/A!";
		selection.FontSize = 360;
		selection.FontName = "Arial";
		selection.ForeColor = System.Drawing.Color.Red;
		
		tx.Selection = selection;
		
		tx.Save("output.pdf", TXTextControl.StreamType.AdobePDFA);
		}

view raw test.cs hosted with â�¤ by GitHub

Running the Application

	
Run the application and check the output folder for the generated PDF document.

When the file is opened in Acrobat Reader, the application informs the user that the file claims to be PDF/A compliant. Therefore, the file has been opened as read-only. The Standards sidebar informs about the conformance and the used standard (in this case PDF/A-1B).

Restricted Fonts

With PDF/A, all fonts must be part of the document. So what happens if a restricted font is used and the document is to be exported to PDF/A? Let us take a look at the properties of a font that is restricted and cannot be embedded for licensing reasons.

If this restricted font is used to generate a PDF/A document, an exception is thrown.

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		using (TXTextControl.ServerTextControl tx = new TXTextControl.ServerTextControl())
		{
		tx.Create();
		
		TXTextControl.Selection selection = new TXTextControl.Selection();
		selection.Text = "Hello, PDF/A!";
		selection.FontSize = 360;
		selection.FontName = "Celtic Garamond the 2nd";
		selection.ForeColor = System.Drawing.Color.Red;
		
		tx.Selection = selection;
		
		try
		{
		tx.Save("output.pdf", TXTextControl.StreamType.AdobePDFA);
		} catch (Exception ex)
		{
		Console.WriteLine(ex.ToString());
		}
		}

view raw test.cs hosted with â�¤ by GitHub

The console output will show the exception:

TXTextControl.FilterException: Text filter error: The document cannot be saved, because it contains a non-embeddable font.
(1-1D0D)

There are two different ways to avoid the exception and do font substitution. The first is automatic replacement of non-embeddable fonts. This can be done by setting the FontSettings.EmbeddableFontsOnly â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° FontSettings Class

 â•° EmbeddableFontsOnly Property

Gets or sets a value specifying that only embeddable fonts can be used in a document. property to true. In this case, TX Text Control will do the font substitution in accordance with a specific mapping table.

Another way to handle substitution is to trap the AdaptFont â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° ServerTextControl Class

 â•° AdaptFont Event

Occurs for each font that must be adapted, because it is not supported. event, which allows you to define a replacement font.

The following code checks for the unsupported font name and replaces it with Arial.

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		using (TXTextControl.ServerTextControl tx = new TXTextControl.ServerTextControl())
		{
		tx.Create();
		
		tx.FontSettings.EmbeddableFontsOnly = true;
		tx.FontSettings.AdaptFontEvent = false;
		tx.AdaptFont += Tx_AdaptFont;
		
		TXTextControl.Selection selection = new TXTextControl.Selection();
		selection.Text = "Hello, PDF/A!";
		selection.FontSize = 360;
		selection.FontName = "Celtic Garamond the 2nd";
		selection.ForeColor = System.Drawing.Color.Red;
		
		tx.Selection = selection;
		
		try
		{
		tx.Save("output.pdf", TXTextControl.StreamType.AdobePDFA);
		} catch (Exception ex)
		{
		Console.WriteLine(ex.ToString());
		}
		}
		
		void Tx_AdaptFont(object sender, TXTextControl.AdaptFontEventArgs e)
		{
		if (e.FontName == "Celtic Garamond the 2nd")
		{
		e.AdaptedFontName = "Arial";
		}
		}

view raw test.cs hosted with â�¤ by GitHub

Read the following article to learn more about how TX Text Control can be used to create sophisticated PDF documents.

Learn More

TX Text Control allows developers to create PDF files programmatically using C#. This article shows various ways to create Adobe PDF documents.

Creating PDF Files using TX Text Control .NET in C#

ASP.NET

The first true WYSIWYG, HTML5-based Web editor and reporting template designer. Give your users an MS Word compatible editor to create powerful reporting templates anywhere - in any browser on any device. Our ASP.NET components combine the power of a reporting tool and an easy-to-use WYSIWYG word processor - fully programmable and embeddable in your ASP.NET application.

See ASP.NET products

Related Posts

ASP.NET

Why use PDF Templates or Editors when you can use True WYSIWYG Editing?

by Bjoern Meyer| February 27, 2024

In this article, we will discuss the advantages of using a true WYSIWYG editing experience for PDF document generation instead of using PDF templates or PDF editors.

 Document Editor PDF

ASP.NET

Chat PDF - A Generative AI Application for PDF Documents using TX Text Control and OpenAIâ€¦

by Bjoern Meyer| February 23, 2024

This article shows how to create a generative AI application for PDF documents using TX Text Control and OpenAI functions in C#. The application uses the OpenAI GPT-3 engine to answer questions on the content of a PDF document.

 ServerTextControl OpenAI PDF Generative AI

ASP.NET

PDF Document Classification with OpenAI and TX Text Control in C#

by Bjoern Meyer| January 26, 2024

This article shows how to classify PDF documents with OpenAI and TX Text Control in C#. The classification is based on the GPT-3 model and the document is imported using TX Text Control .NET Server for ASP.NET.

 OpenAI GPT-3 Text Analysis PDF

ASP.NET

Creating Valid XRechnung / ZUGFeRD Invoices with ASP.NET Core C#

by Bjoern Meyer| December 28, 2023

This article shows how to create valid XRechnung and ZUGFeRD invoices with ASP.NET Core C#. The invoice is created with the help MailMerge component and the ZUGFeRD-csharp library.

 ZUGFeRD XRechnung ServerTextControl MailMerge

	Summary
	PDF/A Benefits
	PDF/A vs. PDF/A-3b
	Create PDF/A Programmatically
	Preparing the Application
	Adding the Code
	Running the Application
	Restricted Fonts

Popular Products

	TX Text Control .NET Server for ASP.NET
	Angular Package for TX Text Control
	TX Text Control .NET for Windows Forms
	TX Text Control .NET for WPF
	DS Server

Technologies

	Reporting
	Document Editing
	PDF Processing
	Electronic Signatures
	Document Viewing

Get Products

	Free Trials
	Online Store

Resources

	Documentation
	Demos
	Blog

Support

	Open Support Case

Ready To Talk?

	Contact Us

	USA: +1 704-544-7445
	Germany: +49 421 42706710

	
Follow Us

Text Control is an award-winning vendor of document processing and reporting components for Windows, web, cloud and mobile development technologies.

We â™¥ documents.

Sign in Contact Us Privacy Policy Legal Notices

Copyright Â© 2024 Text Control, LLC. All rights reserved. Legal Notices.

TX Text Control, DS Server, ReportingCloud and other product names used herein might be trademarks or registered trademarks of Text Control, LLC and/or one of its subsidiaries or affiliates in the U.S. and/or other countries.

