

	Products
	Technologies
	Demos
	Docs
	Blog
	Support
	Company

	
	 My Licenses

Text Control Products

WEB, SERVER AND CLOUD

ASP.NET Core .NET 6 .NET 7 .NET 8 Angular Blazor React JavaScript

	TX Text Control .NET Server Popular32.0 SP2 Integrate document processing into your applications to create documents such as PDFs and MS Word documents, including client-side document editing, viewing, and electronic signatures.

Getting started with:

	ASP.NET Core
	Angular
	Blazor
	JavaScript
	React

	Download Trial
	Trial Access Token

DESKTOP

Windows Forms .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WinForms 32.0 SP2 Document processing and editing for Windows Forms applications.
	TX Text Control Express 32.0 SP2 Free for private and non-commercial use.
	TX Spell .NET Powerful spell checking and language tools for Windows Forms based applications.

WPF .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WPF 32.0 SP2 Document processing and editing for WPF applications.
	TX Spell .NET Powerful spell checking and language tools for WPF based applications.

ActiveX VB6

	TX Text Control ActiveX 32.0 Document processing for COM-based applications built in Visual Basic 6.

HOSTED CLOUD

Cloud Web API

	ReportingCloud "Pay-per-document", hosted document creation Web API.

LOW CODE PLATFORM

Angular React JavaScript

	DS Server 3.2.0 Low-Code backend for web applications to bring document processing and editing to any app on any platform.

Core Technologies

Our libraries - built around our core technologies - help developers add deep functionality document processing to web, mobile, cloud and desktop applications.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	 Reporting Combine powerful reporting and an easy-to-use MS Word compatible word processor
	 Editing Cross-browser, cross-platform document editor to edit MS Word compatible documents.
	 PDF Processing Create and process PDF document workflows into business applications.

	 Signatures Electronic signature workflows for your applications.
	 Viewing Share documents with form fields and collaboration features.
	 Workflow Automate collaboration processes and speed up the complete document workflow.

Text Control Documentation

The documentation provides an overview of the complete product range, including getting started tutorials, technical articles and reference guides.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

ASP.NET

	TX Text Control .NET Server
	TX Spell .NET

Windows Forms

	TX Text Control .NET
	TX Spell .NET

WPF

	TX Text Control .NET
	TX Spell .NET

ActiveX

	TX Text Control ActiveX

Angular

	Angular Package for TX Text Control

Text Control Blog

The Text Control Blog is the central information channel for all products, developed by Text Control. We post news updates, product information, sample applications, technical articles, tutorials and conference reports several times per week. Subscribe to the feed today.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Read Blog

Where to see Text Control: Conferences in 2024 March 5, 2024

Working with Content Controls in MS Wordâ€¦ March 4, 2024

TX Text Control React Packages Released February 29, 2024

Using the TX Text Control Document Viewer in aâ€¦ February 29, 2024

	Service Pack
	ReportingCloud
	Reporting
	HTML5
	.NET
	Conference
	Windows Forms
	ASP.NET Core
	Tutorial
	ASP.NET
	Corporate
	Sample
	Release
	DS Server
	Angular
	WPF

Text Control Support

The Text Control Support section offers links to all technical resources related to Text Control, including documentation, getting started guides, FAQs and links to interesting blog articles.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

	Overview
	Documentation
	Known Issues

About Text Control

Text Control is an award-winning Visual Studio Industry Partner and leading vendor of word processing and reporting components for Windows, web and mobile development technologies.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	Overview
	Consulting
	Partner Program
	Customers
	Careers
	Events

	Newsletter
	Subscribe
	Unsubscribe

	Legal
	Privacy Policy
	Legal Notices

Create, Pre-Select, Flatten and Extract PDF Form Fields using C#

Next Previous

Create, Pre-Select, Flatten and Extract PDF Form Fields using C#

 by Bjoern Meyer| August 14, 2023 | ASP.NET Form Fields PDF

Summary

TX Text Control can be used for the creation and processing of PDF form fields. This article shows how to create, select, flatten, and extract form fields in PDF documents.

TX Text Control provides a comprehensive set of features for creating and deploying electronic forms, including form fields such as form text fields, check boxes, and drop-down lists. The Document Editor can be used to create these forms, and the Document Viewer can be used to deploy these forms to collect the data.

This article describes how to use TX Text Control to create PDF documents with form fields and how to extract form field values from completed PDF documents.

Creating Forms Programmatically

TX Text Control makes it easy to create, share, and collect PDF documents in business applications. The following tutorial will show you how to programmatically create a simple form and how to export it to a PDF file.

	In Visual Studio, create a new C# Console App, enter a name, select your preferred Framework (.NET 6) and create it by clicking Create.

Adding the NuGet Package

	
In the Solution Explorer, select your created project and choose Manage NuGet Packages... from the Project main menu.

Select Text Control Offline Packages from the Package source drop-down.

Install the latest versions of the following package:

	TXTextControl.TextControl.ASP.SDK

Creating the PDF

	
To programmatically create a PDF with form fields from scratch, add the following code to the Main method of the Program class:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		using (TXTextControl.ServerTextControl tx = new TXTextControl.ServerTextControl()) {
		tx.Create();
		
		tx.Selection.FontSize = 800;
		tx.Selection.Text = "Sample Form\r\n\r\n";
		
		tx.Selection.FontSize = 400;
		tx.Selection.Text = "Company name:\r\n";
		
		// add a text form field
		TXTextControl.TextFormField textFormField = new TXTextControl.TextFormField(1000);
		textFormField.Name = "company_name";
		textFormField.Text = "Text Control, LLC";
		tx.FormFields.Add(textFormField);
		
		tx.Selection.Text = "\r\n\r\nCountry:\r\n";
		
		// add a text form field
		TXTextControl.SelectionFormField selectionFormField = new TXTextControl.SelectionFormField(1000);
		selectionFormField.Name = "company_country";
		selectionFormField.Items = new string[] { "United States", "Germany", "Italy" };
		selectionFormField.SelectedIndex = 0;
		tx.FormFields.Add(selectionFormField);
		
		// export the document as PDF
		tx.Save("results.pdf", TXTextControl.StreamType.AdobePDF);
		}

view raw sample.cs hosted with â�¤ by GitHub

When this document is loaded into Adobe Acrobat Reader, it is automatically recognized as a form and users can fill in the fields.

Flatten Form Fields

If you have deployed the document using the Document Editor or the Document Viewer and the user has filled in the form fields, you will probably want to flatten the form fields. This means the selected form field value is used to replace the form field and the form fields themselves are removed.

The Remove â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° FormFieldCollection Class

 â•° Remove Method

Removes the specified form field from a Text Control document. method of the FormFieldCollection â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° FormFieldCollection Class

An instance of the FormFieldCollection class contains all form fields in a Text Control document represented through objects of the types TextFormField, CheckFormField and SelectionFormField. can be used to replace the field with the actual content. The following function will iterate through all of the fields in the form in order to remove the field functionality:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		private void FlattenFormFields(TextControl textControl) {
		int fieldCount = textControl1.FormFields.Count;
		
		for (int i = 0; i < fieldCount; i++) {
		TextFieldCollectionBase.TextFieldEnumerator fieldEnum =
		textControl1.FormFields.GetEnumerator();
		fieldEnum.MoveNext();
		
		FormField curField = (FormField)fieldEnum.Current;
		textControl1.FormFields.Remove(curField, true);
		}
		}

view raw test.cs hosted with â�¤ by GitHub

Pre-Selecting Form Fields

The MailMerge â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer Namespace

 â•° MailMerge Class

The MailMerge class is a .NET component that can be used to effortlessly merge template documents with database content in .NET projects, such as ASP.NET web applications, web services or Windows services. class can be used for merging of objects or JSON data with form fields.

How form fields are handled during the merge process is controlled by the FormFieldMergeType â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer Namespace

 â•° MailMerge Class

 â•° FormFieldMergeType Property

Specifies in which manner form fields are treated during the merge process. property.

	Member	Description
	None	Form fields are not merged at all.
	Preselect	Form field contents are pre-selected when possible. Form fields that are not associated with a data table column are not affected.
	Replace	Form fields are replaced by database content. Empty form fields are removed according to the RemoveEmptyFields â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer Namespace

 â•° MailMerge Class

 â•° RemoveEmptyFields Property

Specifies whether empty fields should be removed from the template or not. property.

Consider the following sample template. It contains various form fields, including checkboxes, drop-down lists, and form text fields:

Pre-Select Form Fields

In the first scenario, to help users by minimizing their effort to complete the form, the form should be pre-populated with known data. The following code shows how to load the template into a ServerTextControl instance for merging using the MailMerge engine:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		// create the pre-populate data object
		HealthcareForm data = new HealthcareForm() {
		insurance_date = DateTime.Now,
		insurance_name = "Global Health",
		insurance_check = true,
		insurance_state = "North Carolina",
		notes = "Thanks for your business."
		};
		
		using (TXTextControl.ServerTextControl tx = new TXTextControl.ServerTextControl()) {
		tx.Create();
		// load the template
		tx.Load("App_Data/health_form.tx", TXTextControl.StreamType.InternalUnicodeFormat);
		
		using (MailMerge mm = new MailMerge()) {
		mm.TextComponent = tx;
		
		// pre-populate the form fields
		mm.FormFieldMergeType = FormFieldMergeType.Preselect;
		mm.MergeObject(data);
		}
		
		// save document as PDF
		byte[] document;
		tx.Save(out document, TXTextControl.BinaryStreamType.AdobePDF);
		}

view raw test.cs hosted with â�¤ by GitHub

The following screenshot shows the pre-selected form fields of the PDF document in the Acrobat Reader.

Replacing Form Fields

In the second scenario, the document should be flattened by the removal of all form fields and their replacement with the actual merge data:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		HealthcareForm data = new HealthcareForm() {
		insurance_date = new DateTime(2020,1,1),
		insurance_name = "Health Providers",
		insurance_check = true,
		insurance_state = "Georgia",
		notes = "Thanks for your business."
		};
		
		using (TXTextControl.ServerTextControl tx = new TXTextControl.ServerTextControl()) {
		tx.Create();
		tx.Load("App_Data/health_form.tx", TXTextControl.StreamType.InternalUnicodeFormat);
		
		using (MailMerge mm = new MailMerge()) {
		mm.TextComponent = tx;
		mm.FormFieldMergeType = FormFieldMergeType.Replace;
		mm.MergeObject(data);
		}
		
		// save document as PDF
		byte[] document;
		tx.Save(out document, TXTextControl.BinaryStreamType.AdobePDF);
		}

view raw test.cs hosted with â�¤ by GitHub

In the resulting document, all of the form fields will be removed and the document will no longer be an editable form document:

Extract Form Field Values

Interactive forms in the Adobe PDF format - also known as AcroForm - are a de-facto standard for the processing of PDF forms. The forms can be created and exported using the TX Text Control, so that the end user can fill out these form fields in Acrobat Reader or other applications.

To collect results from completed documents, TX Text Control allows you to extract data from form fields.

The following code shows how to get all the AcroForm fields from the above sample PDF document using the GetAcroFormFields â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer.PDF Namespace

 â•° Forms Class

 â•° GetAcroFormFields Method

Imports AcroFormFields from an Adobe PDF document. method, which accepts filenames and byte arrays.

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		FormField[] acroForms = Forms.GetAcroFormFields("lease_agreement.pdf");
		
		foreach (FormField field in acroForms) {
		switch (field) {
		case FormTextField textField:
		Console.WriteLine("Field \"{0}\" extracted: {1}",
		textField.FieldName,
		textField.Value);
		break;
		
		case FormCheckBox checkBoxField:
		Console.WriteLine("Field \"{0}\" extracted: {1}",
		checkBoxField.FieldName,
		checkBoxField.IsChecked.ToString());
		break;
		
		case FormComboBox comboBoxField:
		Console.WriteLine("Field \"{0}\" extracted. Selected value: {1}",
		comboBoxField.FieldName,
		comboBoxField.Value);
		
		foreach (var item in comboBoxField.Options) {
		Console.WriteLine(" -> Option: {0}", item);
		}
		
		break;
		}
		}

view raw test.cs hosted with â�¤ by GitHub

The output lists all completed form fields including the name and possible drop-down options:

Field "insurance_date" extracted: 1/1/2020
Field "insurance_name" extracted: Health Providers
Field "insurance_check" extracted: True
Field "notes" extracted: Thanks for your business.
Field "insurance_state" extracted. Selected value: North Carolina
 -> Option: Georgia
 -> Option: California
 -> Option: North Carolina

Also See

This post references the following in the documentation:

	TXTextControl.FormFieldCollection.Remove Method â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° FormFieldCollection Class

 â•° Remove Method

Removes the specified form field from a Text Control document.
	TXTextControl.FormFieldCollection Class â•° TX Text Control .NET Server for ASP.NET

 â•° TXTextControl Namespace

 â•° FormFieldCollection Class

An instance of the FormFieldCollection class contains all form fields in a Text Control document represented through objects of the types TextFormField, CheckFormField and SelectionFormField.
	TXTextControl.DocumentServer.MailMerge Class â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer Namespace

 â•° MailMerge Class

The MailMerge class is a .NET component that can be used to effortlessly merge template documents with database content in .NET projects, such as ASP.NET web applications, web services or Windows services.
	TXTextControl.DocumentServer.MailMerge.FormFieldMergeType Property â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer Namespace

 â•° MailMerge Class

 â•° FormFieldMergeType Property

Specifies in which manner form fields are treated during the merge process.
	TXTextControl.DocumentServer.MailMerge.RemoveEmptyFields Property â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer Namespace

 â•° MailMerge Class

 â•° RemoveEmptyFields Property

Specifies whether empty fields should be removed from the template or not.
	TXTextControl.DocumentServer.PDF.Forms.GetAcroFormFields Method â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer.PDF Namespace

 â•° Forms Class

 â•° GetAcroFormFields Method

Imports AcroFormFields from an Adobe PDF document.

ASP.NET

The first true WYSIWYG, HTML5-based Web editor and reporting template designer. Give your users an MS Word compatible editor to create powerful reporting templates anywhere - in any browser on any device. Our ASP.NET components combine the power of a reporting tool and an easy-to-use WYSIWYG word processor - fully programmable and embeddable in your ASP.NET application.

See ASP.NET products

Related Posts

ASP.NET

Why use PDF Templates or Editors when you can use True WYSIWYG Editing?

by Bjoern Meyer| February 27, 2024

In this article, we will discuss the advantages of using a true WYSIWYG editing experience for PDF document generation instead of using PDF templates or PDF editors.

 Document Editor PDF

ASP.NET

Chat PDF - A Generative AI Application for PDF Documents using TX Text Control and OpenAIâ€¦

by Bjoern Meyer| February 23, 2024

This article shows how to create a generative AI application for PDF documents using TX Text Control and OpenAI functions in C#. The application uses the OpenAI GPT-3 engine to answer questions on the content of a PDF document.

 ServerTextControl OpenAI PDF Generative AI

ASP.NET

PDF Document Classification with OpenAI and TX Text Control in C#

by Bjoern Meyer| January 26, 2024

This article shows how to classify PDF documents with OpenAI and TX Text Control in C#. The classification is based on the GPT-3 model and the document is imported using TX Text Control .NET Server for ASP.NET.

 OpenAI GPT-3 Text Analysis PDF

ASP.NET

Document Viewer: Save the Values of Form Fields in Documents

by Bjoern Meyer| December 19, 2023

The TX Text Control Document Viewer is used to allow users to fill in form fields in documents. This article explains how to save a document with the values of the filled in form fields.

 ServerTextControl PDF Form Fields

	Summary
	Creating Forms Programmatically
	Adding the NuGet Package
	Creating the PDF
	Flatten Form Fields
	Pre-Selecting Form Fields
	Pre-Select Form Fields
	Replacing Form Fields
	Extract Form Field Values

Popular Products

	TX Text Control .NET Server for ASP.NET
	Angular Package for TX Text Control
	TX Text Control .NET for Windows Forms
	TX Text Control .NET for WPF
	DS Server

Technologies

	Reporting
	Document Editing
	PDF Processing
	Electronic Signatures
	Document Viewing

Get Products

	Free Trials
	Online Store

Resources

	Documentation
	Demos
	Blog

Support

	Open Support Case

Ready To Talk?

	Contact Us

	USA: +1 704-544-7445
	Germany: +49 421 42706710

	
Follow Us

Text Control is an award-winning vendor of document processing and reporting components for Windows, web, cloud and mobile development technologies.

We â™¥ documents.

Sign in Contact Us Privacy Policy Legal Notices

Copyright Â© 2024 Text Control, LLC. All rights reserved. Legal Notices.

TX Text Control, DS Server, ReportingCloud and other product names used herein might be trademarks or registered trademarks of Text Control, LLC and/or one of its subsidiaries or affiliates in the U.S. and/or other countries.

