

	Products
	Technologies
	Demos
	Docs
	Blog
	Support
	Company

	
	 My Licenses

Text Control Products

WEB, SERVER AND CLOUD

ASP.NET Core .NET 6 .NET 7 .NET 8 Angular Blazor React JavaScript

	TX Text Control .NET Server Popular32.0 SP2 Integrate document processing into your applications to create documents such as PDFs and MS Word documents, including client-side document editing, viewing, and electronic signatures.

Getting started with:

	ASP.NET Core
	Angular
	Blazor
	JavaScript
	React

	Download Trial
	Trial Access Token

DESKTOP

Windows Forms .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WinForms 32.0 SP2 Document processing and editing for Windows Forms applications.
	TX Text Control Express 32.0 SP2 Free for private and non-commercial use.
	TX Spell .NET Powerful spell checking and language tools for Windows Forms based applications.

WPF .NET 6 .NET 7 .NET 8 .NET Framework

	TX Text Control .NET for WPF 32.0 SP2 Document processing and editing for WPF applications.
	TX Spell .NET Powerful spell checking and language tools for WPF based applications.

ActiveX VB6

	TX Text Control ActiveX 32.0 Document processing for COM-based applications built in Visual Basic 6.

HOSTED CLOUD

Cloud Web API

	ReportingCloud "Pay-per-document", hosted document creation Web API.

LOW CODE PLATFORM

Angular React JavaScript

	DS Server 3.2.0 Low-Code backend for web applications to bring document processing and editing to any app on any platform.

Core Technologies

Our libraries - built around our core technologies - help developers add deep functionality document processing to web, mobile, cloud and desktop applications.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	 Reporting Combine powerful reporting and an easy-to-use MS Word compatible word processor
	 Editing Cross-browser, cross-platform document editor to edit MS Word compatible documents.
	 PDF Processing Create and process PDF document workflows into business applications.

	 Signatures Electronic signature workflows for your applications.
	 Viewing Share documents with form fields and collaboration features.
	 Workflow Automate collaboration processes and speed up the complete document workflow.

Text Control Documentation

The documentation provides an overview of the complete product range, including getting started tutorials, technical articles and reference guides.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

ASP.NET

	TX Text Control .NET Server
	TX Spell .NET

Windows Forms

	TX Text Control .NET
	TX Spell .NET

WPF

	TX Text Control .NET
	TX Spell .NET

ActiveX

	TX Text Control ActiveX

Angular

	Angular Package for TX Text Control

Text Control Blog

The Text Control Blog is the central information channel for all products, developed by Text Control. We post news updates, product information, sample applications, technical articles, tutorials and conference reports several times per week. Subscribe to the feed today.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Read Blog

Where to see Text Control: Conferences in 2024 March 5, 2024

Working with Content Controls in MS Wordâ€¦ March 4, 2024

TX Text Control React Packages Released February 29, 2024

Using the TX Text Control Document Viewer in aâ€¦ February 29, 2024

	Tutorial
	Windows Forms
	ASP.NET Core
	Reporting
	Sample
	ReportingCloud
	ASP.NET
	Corporate
	HTML5
	Release
	Conference
	Service Pack
	WPF
	.NET
	Angular
	DS Server

Text Control Support

The Text Control Support section offers links to all technical resources related to Text Control, including documentation, getting started guides, FAQs and links to interesting blog articles.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

New Ticket

	Overview
	Documentation
	Known Issues

About Text Control

Text Control is an award-winning Visual Studio Industry Partner and leading vendor of word processing and reporting components for Windows, web and mobile development technologies.

 +1 704-544-7445 (United States)

 +1 855-533-8398 (United States, toll free)

Contact Us or Schedule Meeting

	Overview
	Consulting
	Partner Program
	Customers
	Careers
	Events

	Newsletter
	Subscribe
	Unsubscribe

	Legal
	Privacy Policy
	Legal Notices

Auto-Generate HTML Forms from PDF AcroForms in C#

Next Previous

Auto-Generate HTML Forms from PDF AcroForms in C#

 by Bjoern Meyer| March 6, 2023 | ASP.NET PDF AcroForms

Summary

TX Text Control enables the automatic generation of HTML forms based on AcroForms in PDF documents. This sample shows how to utilize the PDF namespace of the DocumentServer to access form fields in PDF documents.

Interactive forms in the Adobe PDF format are also known as AcroForm, the de-facto standard for PDF forms processing. Those forms can be created and exported using TX Text Control, so that end-users can fill-out these form fields in Acrobat Reader or other applications.

Create and Deploy Forms

Forms handling is fully supported by the TX Text Control DocumentEditor and the DocumentViewer that allows you to create sophisticated forms and to deploy forms to collect user data.

Learn More

TX Text Control can be used to create sophisticated, smart forms to collect data from users in different ways. This article gives an overview of various ways to deploy forms using TX Text Control.

Deploying Forms with TX Text Control

Creating HTML Forms

The DocumentViewer is responsive and supports mobile devices as well, but sometimes a pure HTML form is the better option to request data from users. Specifically, if the completed data should be collected inside of typical web based workflows. The advantage of TX Text Control is the integration into a complete workflow:

	Maintain one master form template
	Extract form fields
	Merge data into master template
	Create final PDF from merged data and the template

The Sample Project

The ASP.NET Core MVC sample project shows how to convert a PDF form into HTML form elements by utilizing the TXTextCOntrol.DocumentServer.PDF â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer.PDF Namespace

TXTextControl.DocumentServer.PDF Namespace namespace that provides methods to extract form field data from PDF documents.

In the sample, the following sample PDF form document is used:

The following HttpGet method uses the GetAcroFormFields â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer.PDF Namespace

 â•° Forms Class

 â•° GetAcroFormFields Method

Imports AcroFormFields from an Adobe PDF document. method to extract existing form fields to convert them to proxy form fields that are used to generate the HTML forms client-side.

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		[HttpGet]
		public List<SmartFormField> GetFormFields(string filename) {
		
		// read all acroform fields from PDF document
		TXTextControl.DocumentServer.PDF.AcroForms.FormField[] formFields =
		TXTextControl.DocumentServer.PDF.Forms.GetAcroFormFields("App_Data/" + filename);
		
		List<SmartFormField> smartFormFields = new List<SmartFormField>();
		
		// loop through all fields and convert them to "SmartFormField" objects
		foreach (TXTextControl.DocumentServer.PDF.AcroForms.FormField field in formFields) {
		
		switch (field) {
		case FormTextField textField:
		smartFormFields.Add(new SmartTextFormField() {
		Name = textField.FieldName,
		Text = textField.Value,
		DisplayName = textField.AlternateFieldName
		});
		break;
		case TXTextControl.DocumentServer.PDF.AcroForms.FormCheckBox checkBoxField:
		smartFormFields.Add(new SmartCheckboxField() {
		Name = checkBoxField.FieldName,
		Checked = checkBoxField.IsChecked,
		DisplayName = checkBoxField.AlternateFieldName
		});
		break;
		case FormComboBox comboBoxField:
		SmartDropdownField sddf = new SmartDropdownField() {
		Name = comboBoxField.FieldName,
		Text = comboBoxField.Value,
		DisplayName = comboBoxField.AlternateFieldName
		};
		
		foreach (var item in comboBoxField.Options) {
		sddf.Items.Add(item);
		}
		
		smartFormFields.Add(sddf);
		
		break;
		}
		
		}
		
		// return fields
		return smartFormFields;
		}

view raw test.cs hosted with â�¤ by GitHub

The proxy classes implement the required properties to generate the appropriate HTML forms:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		public class SmartFormField {
		public string Name { get; set; }
		public string Text { get; set; }
		public string DisplayName { get; set; }
		}
		
		public class SmartTextFormField : SmartFormField {
		public string TypeName { get; set; } = "SmartTextFormField";
		}
		
		public class SmartCheckboxField : SmartFormField {
		public bool Checked { get; set; }
		public string TypeName { get; set; } = "SmartCheckboxField";
		}
		
		public class SmartDropdownField : SmartFormField {
		public List<string> Items { get; set; } = new List<string>();
		public string TypeName { get; set; } = "SmartDropdownField";
		}
		
		public class SmartDateField : SmartFormField {
		public string Date { get; set; }
		public string TypeName { get; set; } = "SmartDateField";
		}

view raw test.cs hosted with â�¤ by GitHub

Client-side, the returned form elements are used to generate the HTML form fields using JavaScript:

 This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
Show hidden characters

		function createHtmlForm(filename) {
		
		var bDocument;
		var serviceURL = "@Url.Action("GetFormFields", "Home")";
		
		$.ajax({
		type: "GET",
		url: serviceURL + "?filename=" + filename,
		success: successFunc,
		error: errorFunc
		});
		
		function successFunc(data, status) {
		
		$("#smartForm").empty();
		
		var fieldset = $("<form><fieldset><legend>Form</legend></fieldset></form>").appendTo("#smartForm");
		
		// loop through all fields and add input elements to dynamicly created form
		data.forEach(formField => {
		
		switch (formField.typeName) {
		
		case "SmartTextFormField":
		fieldset.append($("<div class='form-group'><label for='" + formField.name + "'>" + formField.displayName.toUpperCase() + "</label><input placeholder='Type in " + formField.name + "' class='form-control' name='" + formField.name + "' id='" + formField.name + "' type='text' value='" + formField.text + "' /></div>"));
		break;
		
		case "SmartCheckboxField":
		
		var checked = "";
		
		if (formField.Checked === true)
		checked = "checked";
		
		fieldset.append($("<div class='form-check'><input " + checked + " class='form-check-input' name='" + formField.name + "' id='" + formField.name + "' type='checkbox' /><label class='form-check-label' for='" + formField.name + "'>" + formField.displayName.toUpperCase() + "</label></div>"));
		break;
		
		case "SmartDateField":
		fieldset.append($("<div class='form-group'><label for='" + formField.name + "'>" + formField.displayName.toUpperCase() + "</label><input class='form-control' name='" + formField.name + "' id='" + formField.name + "' type='date' value='" + formField.date + "' /></div>"));
		break;
		
		case "SmartDropdownField":
		
		console.log("drop down");
		
		var items;
		
		formField.items.forEach(item => {
		
		if (item === formField.text)
		items += "<option selected>" + item + "</option>"
		else
		items += "<option>" + item + "</option>"
		});
		
		fieldset.append($("<div class='form-group'><label for='" + formField.name + "'>" + formField.displayName.toUpperCase() + "</label><select class='form-control' name='" + formField.name + "' id='" + formField.name + "'>" + items + "</div></div>"));
		break;
		
		}
		
		});
		}
		
		function errorFunc() {
		alert("Error");
		}
		
		}

view raw test.js hosted with â�¤ by GitHub

As seen in the screenshot below, the HTML form fields are created with a form group label based on the tooltip property in Adobe Acrobat. In the TX Text Control FormField class, this value is available in the AlternateFieldName â•° TX Text Control .NET Server for ASP.NET

 â•° DocumentServer.PDF Namespace

 â•° AcroForms.FormField Class

 â•° AlternateFieldName Property

Gets or sets the alternate field name of the field. property.

You can download and test this sample from our GitHub repository.

Download and Fork This Sample on GitHub

We proudly host our sample code on github.com/TextControl.

Please fork and contribute.

Download ZIP

Open on GitHub

Open in Visual Studio

Requirements for This Sample

	TX Text Control .NET Server for ASP.NET 31.0
	Visual Studio 2022

ASP.NET

The first true WYSIWYG, HTML5-based Web editor and reporting template designer. Give your users an MS Word compatible editor to create powerful reporting templates anywhere - in any browser on any device. Our ASP.NET components combine the power of a reporting tool and an easy-to-use WYSIWYG word processor - fully programmable and embeddable in your ASP.NET application.

See ASP.NET products

Related Posts

ASP.NET

Why use PDF Templates or Editors when you can use True WYSIWYG Editing?

by Bjoern Meyer| February 27, 2024

In this article, we will discuss the advantages of using a true WYSIWYG editing experience for PDF document generation instead of using PDF templates or PDF editors.

 Document Editor PDF

ASP.NET

Chat PDF - A Generative AI Application for PDF Documents using TX Text Control and OpenAIâ€¦

by Bjoern Meyer| February 23, 2024

This article shows how to create a generative AI application for PDF documents using TX Text Control and OpenAI functions in C#. The application uses the OpenAI GPT-3 engine to answer questions on the content of a PDF document.

 ServerTextControl OpenAI PDF Generative AI

ASP.NET

PDF Document Classification with OpenAI and TX Text Control in C#

by Bjoern Meyer| January 26, 2024

This article shows how to classify PDF documents with OpenAI and TX Text Control in C#. The classification is based on the GPT-3 model and the document is imported using TX Text Control .NET Server for ASP.NET.

 OpenAI GPT-3 Text Analysis PDF

ASP.NET

Document Viewer: Save the Values of Form Fields in Documents

by Bjoern Meyer| December 19, 2023

The TX Text Control Document Viewer is used to allow users to fill in form fields in documents. This article explains how to save a document with the values of the filled in form fields.

 ServerTextControl PDF Form Fields

	Summary
	Create and Deploy Forms
	Creating HTML Forms
	The Sample Project

Popular Products

	TX Text Control .NET Server for ASP.NET
	Angular Package for TX Text Control
	TX Text Control .NET for Windows Forms
	TX Text Control .NET for WPF
	DS Server

Technologies

	Reporting
	Document Editing
	PDF Processing
	Electronic Signatures
	Document Viewing

Get Products

	Free Trials
	Online Store

Resources

	Documentation
	Demos
	Blog

Support

	Open Support Case

Ready To Talk?

	Contact Us

	USA: +1 704-544-7445
	Germany: +49 421 42706710

	
Follow Us

Text Control is an award-winning vendor of document processing and reporting components for Windows, web, cloud and mobile development technologies.

We â™¥ documents.

Sign in Contact Us Privacy Policy Legal Notices

Copyright Â© 2024 Text Control, LLC. All rights reserved. Legal Notices.

TX Text Control, DS Server, ReportingCloud and other product names used herein might be trademarks or registered trademarks of Text Control, LLC and/or one of its subsidiaries or affiliates in the U.S. and/or other countries.

